FINAL EXAMINATION

Dec. 8, 2009, 10-11:50 mm

ECE 580
Prof. G. Temes

Open Book

1. The two-port shown operates between 50 ohm terminations, and $S_{11}=0$ at all frequencies. $\mathrm{C}=1 \mathrm{pF}$.
(a) Find R and L.
(b) Find S_{12} as a function of frequency.

2. The $-3-\mathrm{dB}$ frequency of a $12^{\text {th }}$-order Butterworth filter is $\mathrm{f}_{3}=10 \mathrm{MHz}$.
(a) Where are the dominant poles?
(b) What is the dominant pole Q_{p} ?
3. (a) Find the transfer function of the $G_{m}-C$ filter shown.
(b) Let the swing at the output of $\mathrm{G}_{\mathrm{m} 3}$ be 50% of the allowed maximum. How can it be scaled back to optimum?

ECE 580 Fall 2009

Final Examination Solution
1.
(a)

(a)
(b)

For $S_{11}=0 \quad, Z_{1}=R_{\text {in }}$

For $I_{1}=1 A$
$V_{1}=Z_{1}=Z_{11} I_{1}+Z_{12} I_{2}=Z_{11}-Z_{12} \frac{V_{2}}{R_{i n}}$
$V_{2}=Z_{21} I_{1}+Z_{22} I_{2}=Z_{12}-Z_{22} \frac{V_{2}}{R_{i n}}$
$\Rightarrow V_{2}=\frac{Z_{12}}{1+\frac{Z_{22}}{R_{i n}}}$
$\Rightarrow Z_{1}=Z_{11}-\frac{\frac{Z_{12}{ }^{2}}{R_{i n}}}{1+\frac{Z_{22}}{R_{i n}}}=\frac{Z_{11} R_{i n}+\operatorname{det} Z}{R_{i n}+Z_{22}}=R_{i n}$
For $Z_{11}=Z_{22}$
$R_{i n}{ }^{2}+Z_{11} R_{i n}=Z_{11} R_{i n}+Z_{11}{ }^{2}-Z_{12}{ }^{2}$-----(1)
$Z_{a}=\left[\begin{array}{cc}\frac{s L R+R^{2}}{s L+2 R} & \frac{R^{2}}{s L+2 R} \\ \frac{R^{2}}{s L+2 R} & \frac{s L R+R^{2}}{s L+2 R}\end{array}\right] \quad Z_{b}=\left[\begin{array}{cc}\frac{1}{s C} & \frac{1}{s C} \\ \frac{1}{s C} & \frac{1}{s C}\end{array}\right] \quad Z=Z_{a}+Z_{b}=\left[\begin{array}{cc}\frac{1}{s C}+\frac{s L R+R^{2}}{s L+2 R} & \frac{1}{s C}+\frac{R^{2}}{s L+2 R} \\ \frac{1}{s C}+\frac{R^{2}}{s L+2 R} & \frac{1}{s C}+\frac{s L R+R^{2}}{s L+2 R}\end{array}\right]$

Use (1) $\Rightarrow R_{\text {in }}{ }^{2}=Z_{11}{ }^{2}-Z_{12}{ }^{2}$
$\Rightarrow R_{i n}{ }^{2}=\left(\frac{s L R}{s L+2 R}\right)\left(\frac{2}{s C}+\frac{s L R+2 R^{2}}{s L+2 R}\right) \quad \Rightarrow \quad R_{i n}{ }^{2}=\frac{s C L R^{2}+2 L R}{2 R C+s L C}$
$s C L R^{2}+2 L R=s C L R_{i n}{ }^{2}+2 R_{i n}{ }^{2} R C$
$\Rightarrow R=R_{i n}$
$\Rightarrow L=R_{i n}{ }^{2} C$
$R=50 \Omega$
$L=2.5 n H$
(b)
$V_{1}=\frac{E_{1}}{2}=Z_{11} \frac{E_{1}}{2 R_{i n}}-Z_{12} \frac{V_{2}}{R_{i n}}$
$V_{2}=\frac{E_{1}}{2 Z_{12}}\left(Z_{11}-R_{i n}\right)$
$S_{12}=S_{21}=\frac{V_{2}}{\frac{E_{1}}{2}}=\frac{Z_{11}-R_{i n}}{Z_{12}}$
$\Rightarrow S_{12}=\frac{s\left(L-R^{2} C\right)+2 R}{s\left(L+R^{2} C\right)+2 R}=\frac{1}{s R C+1}=\frac{1}{1+j \omega 5 E^{-11}}$

$$
\begin{aligned}
& Y_{A}=\left[\begin{array}{cc}
\frac{1}{S L} & -\frac{1}{S L} \\
-\frac{1}{S L} & \frac{1}{S L}
\end{array}\right] Y_{B}=\left[\begin{array}{cc}
\frac{S C+\frac{1}{R}}{S R C+2} & -\frac{1}{R} \frac{1}{S R C+2} \\
-\frac{1}{R} \frac{1}{S R C+2} & \frac{S C+\frac{1}{R}}{S R C+2}
\end{array}\right] \\
& Y=Y_{A}+Y_{B} \\
& S_{11}=0 \Rightarrow 2_{\text {in }}=50 \Omega \\
& I_{2}=y_{21} V_{1}+Y_{22} V_{2}=-\frac{V_{2}}{R_{2}} \Rightarrow V_{2}=-\frac{Y_{21}}{\frac{1}{R_{2}}+y_{22}} V_{1}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\therefore I_{1}=y_{11} V_{1}+y_{12} V_{2}=y_{11} V_{1}-\frac{y_{12} y_{21}}{\frac{1}{R_{2}}+y_{22}} V_{1} \\
\Rightarrow Z_{\text {in }}=\frac{V_{1}}{I_{1}}=\frac{1 / R_{2}+y_{22}}{y_{11}^{2}-y_{12}^{2}+y_{11} / R_{2}}=50 \Omega \\
\Rightarrow y_{11}^{2}-y_{12}^{2}=\frac{1}{R_{2}^{2}} \Rightarrow\left(y_{11}-y_{12}\right)\left(y_{11}+y_{12}\right)=\left(\frac{2}{S L}+\frac{S R C+2}{R(S R C+2)}\right)\left(\frac{S R C}{R(S R C+2)}\right)=\frac{1}{50^{2}} \\
\Rightarrow S L C R_{2}^{2}+2 R C R_{2}^{2}=S R^{2} L C+2 R L \\
\therefore R^{2}=R_{2}^{2} \\
\\
L=C R_{2}^{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
R=50 \Omega \\
L=2.5 n H
\end{array}\right.
$$

(b) Symmetric network $\Rightarrow S_{22}=0$.

$$
S_{12}=\frac{b_{1}}{a_{2}}, \quad E_{1}=0
$$

Matching $\Rightarrow b_{1}=\frac{V_{1}}{\sqrt{R_{1}}}, a_{2}=\frac{V_{2}}{\sqrt{R_{2}}}$

$$
\begin{aligned}
& I_{1}=Y_{11} V_{1}+V_{12} V_{2}=-\frac{V_{1}}{R_{1}} \Rightarrow V_{1}\left(y_{11}+\frac{1}{R_{1}}\right)=-V_{2} y_{12} \\
& \therefore S_{12}=\frac{b_{1}}{a_{2}}=\frac{V_{1}}{V_{2}}=-\frac{V_{12}}{Y_{11}+\frac{1}{R_{1}}}=\frac{1}{S R C+1}=\frac{1}{1+j \omega 5 \times 10^{-11}}
\end{aligned}
$$

1. (a)

$$
\begin{aligned}
& Z_{A}=\left[\begin{array}{ll}
\frac{R \cdot(R+S L)}{2 R+S L} & \frac{R^{2}}{2 R+S L} \\
\frac{R^{2}}{2 R+S L} & \frac{R}{2 R+C}
\end{array}\right] \\
& Z_{B}=\left[\begin{array}{ll}
\frac{1}{S C} \\
\frac{1}{S C} & \frac{1}{S C}
\end{array}\right]
\end{aligned}
$$

$z=Z_{A}+z_{B}$

$$
z_{11}=z_{22}=\frac{1}{S c}+R-\frac{R^{2}}{2 R+5 L}
$$

$$
\begin{aligned}
& \text { for } I_{1}=1 A \\
& V_{1}=z_{1}=z_{1} I_{1}+z_{1} I_{2}=z_{11}-z_{22} \mathrm{~V} / r \\
& V_{2}=z_{21} I_{1}+z_{2}=2=-z_{22} / 2 / r
\end{aligned}
$$

$$
z_{1}=\frac{z_{11} r+\operatorname{det} z}{\gamma+z_{22}}
$$

$10 \Rightarrow z_{1}=r \Rightarrow r^{2}=z_{11}^{2}-z_{12}^{2} \ldots 9$
put (1). (2) is to 3$) \quad \Rightarrow 222 \cdot+2+\cos ^{2} y^{2} 2=$ $+r$ Cos ${ }^{2}$

$$
\Rightarrow\left\{\begin{array}{l}
2 R L=r^{2} \cdot 2 R C \\
R^{2} L C=r^{2} L C
\end{array}\right.
$$

$$
\Rightarrow \quad L=r=50 . c=2,5 n+1
$$

$$
V_{1}=\frac{E_{1}}{2}=Z_{11} \cdot \frac{E_{1}}{2 r}-z_{12} \frac{V_{2}}{r}
$$

$$
V_{2}=\frac{E_{1}}{2 z_{12}}\left[z_{11}-r\right]
$$

So $S_{12}=S_{21}=\frac{V_{2}}{E_{1} 12}=\frac{Z \cdot-r}{Z_{12}}=\frac{2 R+S\left(L-R^{2} C\right)}{2 R+S\left(L+R^{2} C\right)}=\frac{100}{100+5 \times 10^{-9} \cdot 5}$

$$
S_{12}(j \omega)=\frac{100}{10+j \times 10^{-7} \omega}
$$

2. (a)
$\omega_{3 d B}{ }^{2}={\sigma_{p}}^{2}+\omega_{p}{ }^{2} \Rightarrow \omega_{3 d B}=\sqrt{\sigma_{p}{ }^{2}+\omega_{p}{ }^{2}}=2 \pi 10 E^{6}=6.28 E^{7}\left[\frac{\mathrm{rad}}{\mathrm{s}}\right]$
$\sigma_{p}=\sin (\beta) \omega_{3 d B}=8.20 E^{6}$
$\omega_{p}= \pm 6.23 E^{7}$
dominate pole $(p 1, p 2)=-8.20 E^{6} \pm j 6.23 E^{7}\left[\frac{\mathrm{rad}}{\mathrm{s}}\right]$
(b)
$S_{k}=C_{n}-\frac{1}{2 n} e^{\frac{j \pi(n-1+2 k)}{2 n}}$
$S_{p}=\sigma_{p}+j \omega_{p} \quad \Rightarrow Q=\frac{\left|S_{p}\right|}{2\left|\sigma_{p}\right|}$
$Q=\frac{C_{n}^{-\frac{1}{2 n}}}{2 \left\lvert\, C_{n}^{\left.-\frac{1}{2 n} \cos \left(\frac{\pi(n-1+2 k)}{2 n}\right) \right\rvert\,}=\frac{1}{2\left|\cos \left(\frac{\pi(n-1+2 k)}{2 n}\right)\right|}\right.}$
$Q_{\max }$ happens at $k=1$
$\Rightarrow Q=\frac{1}{2\left|\cos \left(\frac{\pi(12-1+2)}{24}\right)\right|}=3.83$
3.

(a)

KCL @ Node $V_{\text {out }}$
$g m_{1} V_{\text {in }}-V_{\text {out }} s C_{1}+g m_{2} V_{\text {out }}-V_{x} g m_{4}=0---(1)$
KCL@ Node V_{X}
$g m_{3} V_{\text {out }}=V_{X} s C_{2}$
$V_{X}=\frac{g m_{3} V_{\text {out }}}{s C_{2}}$
Put (2) in (1)
$g m_{1} V_{\text {in }}-V_{\text {out }} s C_{1}+g m_{2} V_{\text {out }}-\frac{g m_{3} g m_{4} V_{\text {out }}}{s C 2}=0$
$\Rightarrow H(s)=\frac{s g m_{1} C_{2}}{s^{2} C_{1} C_{2}-s g m_{2} C_{2}+g m_{3} g m_{4}}$
Note: The circuit is unstable
(b)

If V_{x} is 50% of the allowed maximum, multiply gm_{3} by 2 and divide gm_{4} by 2 in order to make sure the feedback current the same.

